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THERMAL FIELD ON THE SURFACE OF A
MATERIAL HEATED BY A LASER PULSE IN A
NARROW RING OF ILLUMINATION

V. V. Bacherikov and A. V. Fabrikov UDC 536.24+621.375

Based on a solution of the problem of the temperature effect of instantancous heat sources uniformly
distributed in a thin plane ring on the boundary of a semiinfinite body and different approximations of that
solution, we constructed a dynamic model of a thermal field on the surface of a material heated by a laser

pulse in a narrow ring of illumination.

Statement of the Problem. Initial Equations. A two-dimensional nonstationary heat conduction problem for
a semi-infinite body with heat supply to it through a thin plane ring on the surface was solved in [1] (scc also
[2 ). The solution is represented by double series whose terms are determined by the convolution of source function
with a complex mathematical expression containing Whittaker functions of different orders. In the present work we
seek possible approximations of this solution as applied to the conditions of material heating by short pulses of
laser radiation focused in a narrow ring of illumination.

Let Ry and R; be the inner and outer radii of the ring within which a planc heat source of specific power
g(r) acts from the time moment r = 0. A general solution in the image space for the region | (0 < r < Ry,z 2 0)

can be written in form
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where ©(r, z, s) is the Laplace transform of ©(r, z, 1) = T(r, z, 1) — Tg with respect to 7 and g(s) is the Laplace
transform of g(r). The solutions for regions 2 (Ry = r < R, z20) and 3 (R; < r < », z = 0) are similar. For
points of the body that lic on the surface (z = 0), transition from the space of transforms to the space of inverse
transforms is possible in analytic form. The solution takes the form [1]
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In [2] the integrals entering into (1) were calculated for two particular cases: ¢(r) = U(r) and ¢(r) =
U@y — U(r — 19), where U is the Heaviside function. These correspond to step and rectangular pulses. We shall
be interested in the response of the system (the surface of a semi-infinite homogencous and isotropic body) to a
S-pulse thermal action:

g (1) =09 (1), ()
where 8(-) is the Dirac delta-function; Q is the cnergy density of the pulse. In order words, we will be interested
in Green's time function or in the function of the temperature effect of instantancous heat sources [3] for a
boundary-value problem formulated in [1 ] for a semi-infinite body heated through a plane thin ring on the surface.
This function is of practical interest for many problems of laser technology, since it gives a good approximation of
the dynamics of a temperature ficld cxcited on the surface of a material by short (smaller than | msce) laser
radiation pulses in a ring zone of illumination. The soluticn of the problem for a source of the form ¢(r) =
U(t) — U@ — 1g) is suitable for investigation of the thermophysical properties of materials under laboratory
conditions, when one manages to realize rectangular heat pulses in practice [4]. A source of the form gtr) =
(3(z) corresponds largely to the conditions of pulse heating of a material by radiation focused in a ring zonc of
illumination (sce, for cxample, [§].
Function of Temperature Effect of Instantaneous Heat Sources. At ¢(r) = Q3(r) Egs. (1) take the form:
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This is actually the function of the temperature effect of instantaneous heat sources for the problem considered.
Here, the following notation is adopted:
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C = ¢y is the volumetric heat capacity, and the cocfficients 4, , are defined by formula (2). The functions
S}m,(x) and Sym,(x) differ from each other by a shift of the indices (v, x) in the appropriatec Whittaker functions
W, by (1/2, 1/2). The time dependence of temperature in these relations is expressed in terms of the diffusion
depth, i.e., the parameter

r0=m, (6)

which determines the distance over which the isothermal surface is displaced in the body for the time 7 due to
diffusion.

At R = R; all three expressions (4) vanish. For the functions ©(r, 0, 1) and @3(r, 0, 1) this is seen directly
from Egs. (4a) and (4c). For ©y(r, 0, 1) this becomes evident from a consideration of its Laplace transform
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with allowance for the formula for the Wronskian of the Bessel functions [6 ]
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The distribution of intcgral temperatures can be found with the help of the equation
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With the use of the tabulated integration formula from [71], Egs. (4a)-(4¢) yicld
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Here, the temperature normalization is the same as in (4). The upper and lower limits of integration »; and rp for
cach region are sclected separately, i.e., 0 = ry < rp < Ry for the first, Ry < ry < r; < R for the second, and
Ry < ry < rp < o for the third region.
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To calculate Sy, and S,’,m at small and large values of x, wc can use formulas of asymptotic expansion and
the limiting formulas for the Tricomi function U(a, b, z) [6], with which the Whittaker function is associated by.

the relationship
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We will neced, in particular, the relations
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which are valid at large values of x ~R12/r(2). We will also need the differentiation formulas |7, 8 |
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A Model of the Temperature Field on the Surface of a Body Heated in a Narrow Ring of Illumination by
Laser Radiation Pulses. Approximating Relations. Assuming the laser radiation pulses to be short as compared
with time 7 from the start of the pulse to the moment of observation, we shall construct a model based on a solution
of the problem for the case of instantancous heat sources, i.c., on formulas (4a)-(4c).

To simplify manipulations, we shall avail ourselves of an approximation based on the smallness of the

quantities

d=r—R/<<R|, Rysr<R,, A=Ry— R <<R,. (1h

In the majority of technical applications associated, in particular, with measurement technique and laser technology
these conditions arc fulfilled [5]. Usually A/R; < 0.01. It is also necessary that the following inequality be
satisfied:

2
A<ry/Ry, 12)

i.c., thc moment of obscrvation r should not be too small.
Using the formula for expansion into a Taylor series and differentiation formula (9), we reduce Egs. (4
with allowance for incqualitics (11) and (12) to the form
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The quantity £ = 2tRAQ designates the total energy in the pulse of thermal action.

In a number of cases when the material is exposed to short laser radiation pulses through a ring of
illumination, we are interested in the temperature field at the time moments for which the depth of diffusion ry is
much smaller than the inner radius of the ring R;. The condition

.\fl = R|2/4ré >> ] (15)
allows us to make a further simplification of formulas (13) with the aid of formula (8) for the asymptotic repre-
sentation of the Whittaker functions. When x; >> 1, we have
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In addition to the principal term of the asymptotic expansion, relation (16) also takes into account the portion of
the remainder term, that is independent of x in an approximation of large values of n: (—1)"n!. On substitution of
(16) into (13), the series arc curtailed, i.c., they become the series of expansion of the Bessel functions

LRy L (R, 2
0 {3 < ) ’
2r§ n=0 (n !)2 4r§
rR, > 1 rR; 2ntl
him =2 ——— 5|3
2ry n=0 (n + 1) (n1)" |4r,
and of the exponent
r2 oc r2
n
CXp | = —5| = 2 -h |
4ry n=0 4r0,
In this case we obtain
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or in an asymptotic approximation of the Bessel functions fg(x) ~/j(x) ~ [1/(VZrx) 1 &xp (x) Eq. (17) yiclds
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Here ©] = ©,/(E/CR%rg), E = 2TRAQ, A = Ry — Ry << Rj.

These equations represent the simplest but still accurate (at small values of A/R, and ry/R)) model of a
temperature field cxcited on a material surface by short laser radiation pulses in a bundle of annular shape.

We cannot regard the derivation of Egs. (18) as entirely rigorous. There is uncertainty in the estimate of
the remainder term in the asymptotic formula (16). The associated crror is small but can manifest itself in the
summation of series (13). Therefore, we shall give another derivation of Egs. (18) that is free of the indicated
uncertainty.

We shall proceed from the solution in the space of transforms. For the first region 0 < r < Ry it is written
in the form [2]:
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0 .

For a narrow ring the solution can be simplificd by cxpanding J) (Ry) into a Taylor serics in A = Ry — Ry << Ry.

In this casc we obtain
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In an asymptotic approximation of large valucs of x
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(sce [7] p. 346), then with allowance for the formula for the inverse Laplace transform
-1 I 2
L IKO(kﬁ)]=~2—rcxp[—k /(41) ]

for the casc of instantanecous sources ¢(1) = Qd(r) we have
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This relation coincides with Eq. (18a). Similarly we derive formulas (18b) and (18c).

Comparison with Known Results for a Narrow Ring and a Disk. Let us compare the results obtained with
known solutions of the problem of heating of a semi-infinite body for two particular cases of exposure of the surface
to instantaneous heat sources of axial symmetry. This is the case of an infinite thin ring and a disk [9].

1. An instantaneous heat source with pulsc energy E acts on the surface of a body along a circle R at time
t = 0. The temperature at the point with the coordinates r, 6, z at this time ¢ is determined by the expression (9,

10]:
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where /() is a modified Bessel function; C is the volumetric heat capacity of the body. This expression is obtained
by integration of the fundamental solution (Green function) over the circumference for an instantaneous point
source with coordinates x', y', z' on the surface of a semi-infinite body:
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For integration wec assumc that the energy of the point source is QRd6 and the total energy in the ring £ =
21RQ.
With account for the asymptotic formula
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Eq. (19 for small values of r(z)/rR yiclds
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where rg is the depth of heat diffusion determined from formula (6). At R=R; and 2 =0, Eq. (20) gives Eq. (18b).
2. An instantancous source acts over a disk of radius R. For this case the solution is obtained from Eq.
(19) by integration with respect to ' after replacing R by r' and £ by 2rQr'dr’ in this equation. The solution has

the form
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In general, the integral is not cxpresscd in tabular functions; however, at r = R it can be calculated. The solution
takes the form
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Formula (21) agreecs with formula (4b). By performing the limiting transition r = 0 and simple
transformations, from Eq. (4b) at Ry =0 and r = Ry = R for z = 0 we obtain

~ R 1 E/C
6,0>0=2 Loo, = L
o V2 T Rro

This equation coincides with Eq. (21) for z = 0 and r = 0.

NOTATION

Oir, 0, 1) = THr, z, 1) — Tg at z = 0, excess temperatures of semi-infinite bodyv in corresponding regions
where the quantity r varies (sce text); Ty, initial temperature; R», Ry, r, outer and inner radii of the ring heat
source and the instantancous radius; z, 1, instantancous (cylindrical) coordinate normal to the surface of semi-
infinitc body and current time; p, s, paramecters of Fourier infinite integral cosine transform and of Laplace
transform; ¢(v), arbitrary (in time) density of a heat flux in a given local region of heating for a source; «. 1, b,
thermal diffusivity, thermal conductivity, and thermal activity; C, volumetric heat capacity of semi-infinitc body
equal 1o ¢y, where ¢ and y are the specific heat capacity and density of the material; A, ,,, constant thermal
amplitudes (see text); U(r), unit step Heaviside function; Wi (), Whittaker function; Fpla, b, x), generalized
hypergeometric function; /,{ ) and K,(-), modified Bessel functions of the first and third kind of the nth order;
d(r), Dirac delta-function.
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